D1-like receptors regulate NADPH oxidase activity and subunit expression in lipid raft microdomains of renal proximal tubule cells.

نویسندگان

  • Hewang Li
  • Weixing Han
  • Van Anthony M Villar
  • Lindsay B Keever
  • Quansheng Lu
  • Ulrich Hopfer
  • Mark T Quinn
  • Robin A Felder
  • Pedro A Jose
  • Peiying Yu
چکیده

NADPH oxidase (Nox)-dependent reactive oxygen species production is implicated in the pathogenesis of cardiovascular diseases, including hypertension. We tested the hypothesis that oxidase subunits are differentially regulated in renal proximal tubules from normotensive and spontaneously hypertensive rats. Basal Nox2 and Nox4, but not Rac1, in immortalized renal proximal tubule cells and brush border membranes were greater in hypertensive than in normotensive rats. However, more Rac1 was expressed in lipid rafts in cells from hypertensive rats than in cells from normotensive rats; the converse was observed with Nox4, whereas Nox2 expression was similar. The D(1)-like receptor agonist fenoldopam decreased Nox2 and Rac1 protein in lipid rafts to a greater extent in hypertensive than in normotensive rats. Basal oxidase activity was 3-fold higher in hypertensive than in normotensive rats but was inhibited to a greater extent by fenoldopam in normotensive (58+/-3.3%) than in hypertensive rats (31+/-5.2%; P<0.05; n=6 per group). Fenoldopam decreased the amount of Nox2 that coimmunoprecipitated with p67(phox) in cells from normotensive rats. D(1)-like receptors may decrease oxidase activity by disrupting the distribution and assembly of oxidase subunits in cell membrane microdomains. The cholesterol-depleting reagent methyl-beta-cyclodextrin decreased oxidase activity and cholesterol content to a greater extent in hypertensive than in normotensive rats. The greater basal levels of Nox2 and Nox4 in cell membranes and Nox2 and Rac1 in lipid rafts in hypertensive rats than in normotensive rats may explain the increased basal oxidase activity in hypertensive rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipid rafts keep NADPH oxidase in the inactive state in human renal proximal tubule cells.

Recent studies have indicated the importance of cholesterol-rich membrane lipid rafts (LRs) in oxidative stress-induced signal transduction. Reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases, the major sources of reactive oxygen species, are implicated in cardiovascular diseases, including hypertension. We tested the hypothesis that NADPH oxidase subunits and activity are reg...

متن کامل

Dopamine D₁-like receptors regulate the α₁A-adrenergic receptor in human renal proximal tubule cells and D₁-like dopamine receptor knockout mice.

The homeostatic control of blood pressure hinges upon the delicate balance between prohypertensinogenic and antihypertensinogenic systems. D₁-like dopamine receptors [dopamine D₁ and D₅ receptors (D₁Rs and D₅Rs, respectively)] and the α₁A-adrenergic receptor (α₁A-AR) are expressed in the renal proximal tubule and engender opposing effects on Na(+) transport, i.e., natriuresis (via D₁Rs and D5Rs...

متن کامل

Differential dopamine receptor subtype regulation of adenylyl cyclases in lipid rafts in human embryonic kidney and renal proximal tubule cells.

Dopamine D1-like receptors (D1R and D5R) stimulate adenylyl cyclase (AC) activity, whereas the D2-like receptors (D2, D3 and D4) inhibit AC activity. D1R, but not the D5R, has been reported to regulate AC activity in lipid rafts (LRs). We tested the hypothesis that D1R and D5R differentially regulate AC activity in LRs using human embryonic kidney (HEK) 293 cells heterologously expressing human...

متن کامل

Renal molecular mechanisms underlying altered Na+ handling and genesis of hypertension during adulthood in prenatally undernourished rats.

In the present study, we investigated the development of hypertension in prenatally undernourished adult rats, including the mechanisms that culminate in dysfunctions of molecular signalling in the kidney. Dams were fed a low-protein multideficient diet throughout gestation with or without α-tocopherol during lactation. The time course of hypertension development followed in male offspring was ...

متن کامل

Lipid raft redox signaling: molecular mechanisms in health and disease.

Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2009